On Newton’s method and Halley’s method for the principal pth root of a matrix

نویسنده

  • Chun-Hua Guo
چکیده

If A is a matrix with no negative real eigenvalues and all zero eigenvalues of A are semisimple, the principal pth root of A can be computed by Newton’s method or Halley’s method, with a preprocessing procedure if necessary. We prove a new convergence result for Newton’s method, and discover an interesting property of Newton’s method and Halley’s method in terms of series expansions. We explain how the convergence of Newton’s method and Halley’s method can be improved when the eigenvalues of A are known or when A is a singular matrix. We also prove new results on pth roots of M -matrices and H-matrices, and consider the application of Newton’s method and Halley’s method to find the principal pth roots of these special matrices. AMS classification: 65F30; 41A58; 15A48

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for the Matrix Sector Function

In this paper we consider algorithms for the matrix sector function, which is a generalization of the matrix sign function. We develop algorithms for computing the matrix sector function based on the (real) Schur decompositions, with and without reordering and the Parlett recurrence. We prove some results on the convergence regions for the specialized versions of Newton’s and Halley’s methods a...

متن کامل

A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT

The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...

متن کامل

A Schur Algorithm for Computing Matrix pth Roots

Any nonsingular matrix has pth roots. One way to compute matrix pth roots is via a specialized version of Newton’s method, but this iteration has poor convergence and stability properties in general. A Schur algorithm for computing a matrix pth root that generalizes methods of Björck and Hammarling [Linear Algebra Appl., 52/53 (1983), pp. 127–140] and Higham [Linear Algebra Appl., 88/89 (1987),...

متن کامل

On large-scale unconstrained optimization problems and higher order methods

Third order methods will in most cases use fewer iterations than a second order method to reach the same accuracy. However, the number of arithmetic operations per iteration is higher for third order methods than a second order method. Newton’s method is the most commonly used second order method and Halley’s method is the most well-known third order method. Newton’s method is more used in prac...

متن کامل

Newton-Ellipsoid Method and its Polynomiography

We introduce a new iterative root-finding method for complex polynomials, dubbed Newton-Ellipsoid method. It is inspired by the Ellipsoid method, a classical method in optimization, and a property of Newton’s Method derived in [7], according to which at each complex number a half-space can be found containing a root. Newton-Ellipsoid method combines this property, bounds on zeros, together with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009